

Number Systems

Arithmetic Operations with Integers

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

February 2025

Previously on FDS

...Number systems and codes

Previously...

- We saw how to represent integers in binary, octal, and hexadecimal number systems and perform conversions from one system to another

Decimal	Unsigned Binary 4-digit vector	Octal 2-digit vector	Hexadecimal 1-digit vector
0	0000	00	0
1	0001	01	1
2	0010	02	2
3	0011	03	3
4	0100	04	4
5	0101	05	5
6	0110	06	6
7	0111	07	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Previously...

Binary number systems

- Binary number representations of n -bit digit vector X
 - Unsigned integers

$$x = \sum_{i=0}^{n-1} X_i 2^i$$

- Sign-and-magnitude

$$x_s = X_{n-1}, \quad x_m = \sum_{i=0}^{n-2} X_i 2^i$$

- Two's complement

$$x = -X_{n-1} 2^{n-1} + \sum_{i=0}^{n-2} X_i 2^i$$

Previously...

Binary number systems

- Binary number representations on n bits

- Unsigned integers

$$x = \sum_{i=0}^{n-1} X_i 2^i$$

Examples:

$$01100_2 = 1 \cdot 2^3 + 1 \cdot 2^2 = 8 + 4 = 12_{10} = C_{16}$$

$$10011_2 = 1 \cdot 2^4 + 1 \cdot 2^1 + 1 \cdot 2^0 = 16 + 2 + 1 = 19_{10} = 13_{16}$$

- Sign-and-magnitude

$$x_s = X_{n-1}, \quad x_m = \sum_{i=0}^{n-2} X_i 2^i$$

Examples:

$$01100_2 = +(1 \cdot 2^3 + 1 \cdot 2^2) = 12_{10}$$

$$10011_2 = -(1 \cdot 2^1 + 1 \cdot 2^0) = -3_{10}$$

- Two's complement

$$x = -X_{n-1} 2^{n-1} + \sum_{i=0}^{n-2} X_i 2^i$$

Examples:

$$01100_2 = 1 \cdot 2^3 + 1 \cdot 2^2 = 12_{10}$$

$$10011_2 = -1 \cdot 2^4 + 1 \cdot 2^1 + 1 \cdot 2^0 \\ = -16 + 2 + 1 = -13_{10}$$

Previously...

Range (Sign) Extension in Two's Complement

- In two's complement, range (sign) extension boils down to simply filling the most significant bits with the sign bit

$$X = 10101_2 = -1 \cdot 2^4 + 1 \cdot 2^2 + 1 \cdot 2^0 = -16 + 4 + 1 = -11_{10}$$

Equal

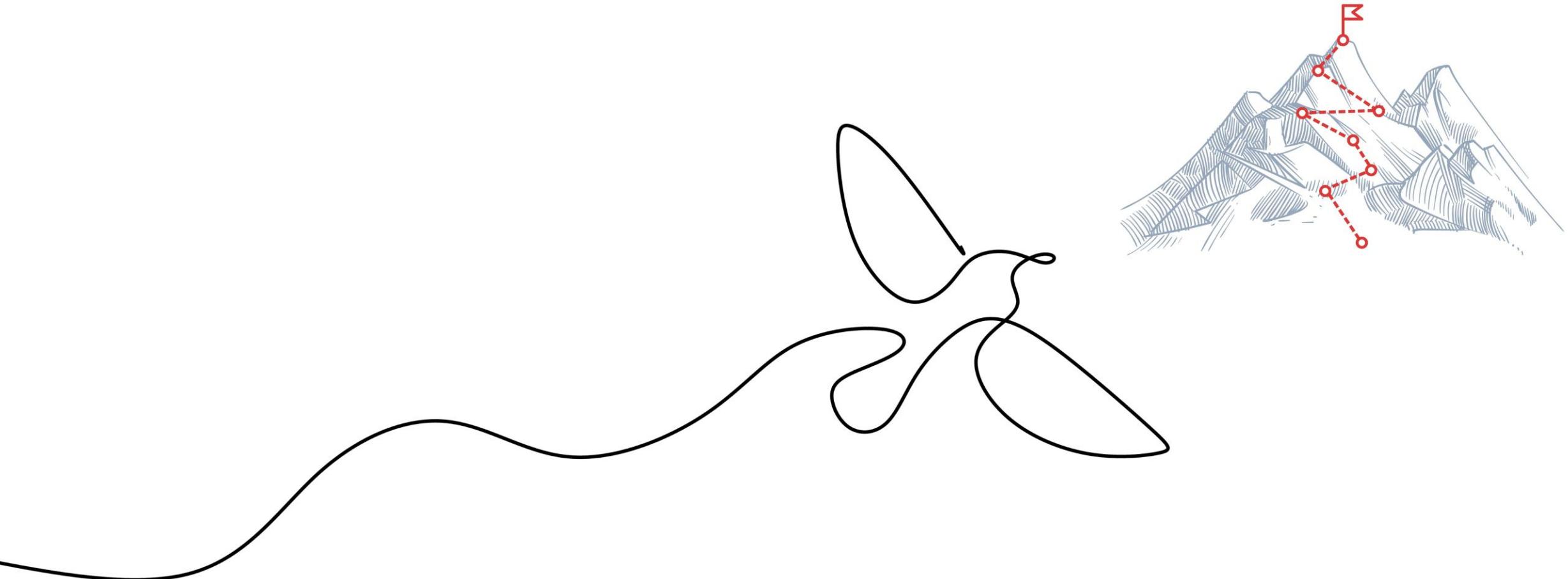
$$\begin{aligned} X = 11110101_2 &= -1 \cdot 2^7 + 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^2 + 1 \cdot 2^0 \\ &= -128 + 64 + 32 + 16 + 4 + 1 \\ &= -11_{10} \end{aligned}$$

Previously...

Change of Sign in Two's Complement

- In two's complement, negating (i.e., changing the sign/polarity) can simply be done by, first complementing every bit and then adding +1
- Example:

$$\begin{array}{c} \text{Bitwise} \\ \text{complement} \end{array} \quad \downarrow \quad \begin{array}{c} \text{Add +1} \end{array} \quad \downarrow \\ -9_{10} = -(01001_2) = (10110_2) + 1 = 10111_2 = -16 + 4 + 2 + 1 = -9_{10} \\ \\ -(-9_{10}) = -(10111_2) = (01000_2) + 1 = 01001_2 = 8 + 1 = 9_{10} \\ \downarrow \\ -16 + 4 + 2 + 1 \end{array}$$

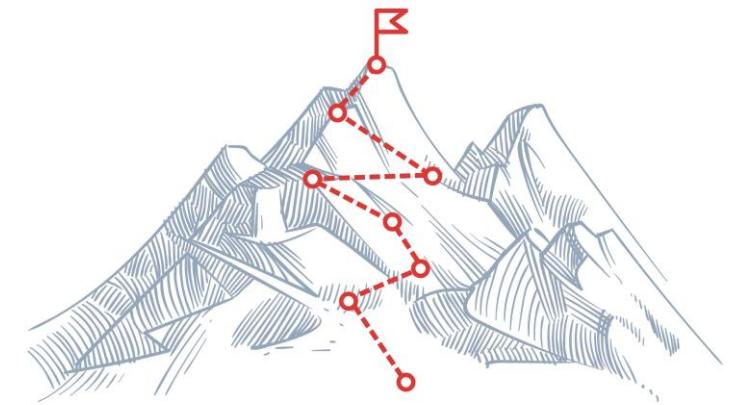


Let's Talk About...

...Performing arithmetic operations
on integers, signed and unsigned

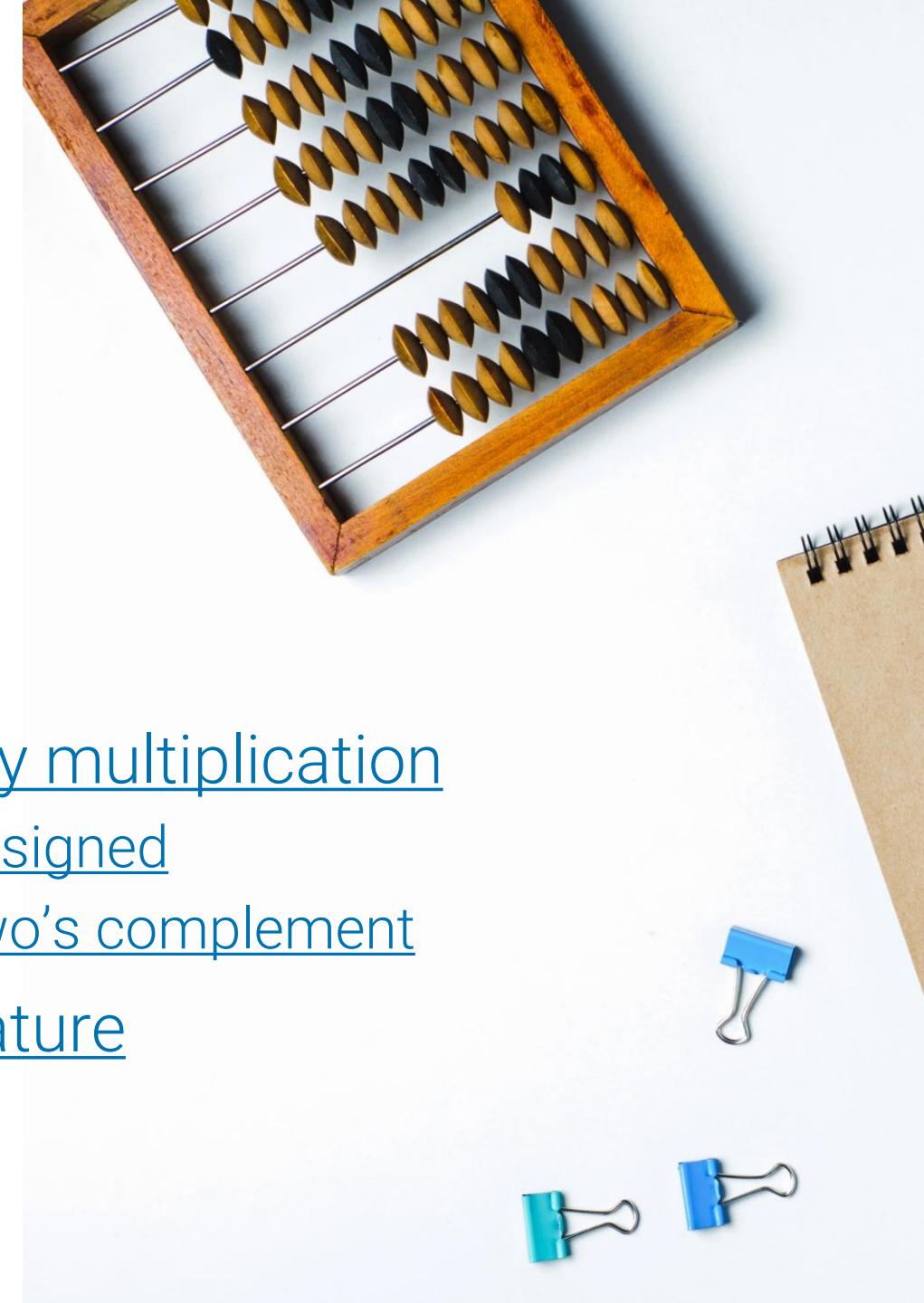
Learning Outcomes

- Note the similarity between arithmetic operations with decimal and binary numbers
- Learn algorithms for $+/-/ \times$
 - Existence of carry and borrow
- Perform $+/-/ \times$ pen-and-paper style
 - Note the similarity between arithmetic algorithms on binary numbers in unsigned and two's complement representation
- Detect exceptional cases when the result is too large to be represented with the given number of digits (overflow)



Quick Outline

- Addition and subtraction of unsigned integers
 - Addition; Overflow;
 - Subtraction;
- Two's complement addition and subtraction
 - Addition/subtraction wheel
 - Addition
 - Subtraction
- Binary multiplication
 - Unsigned
 - Two's complement
- Literature



Addition and Subtraction of Unsigned Integers

0	0	0	1	1	0	1	1	1	0	0	1	0	0	0	1	1	0	0
1	0	0	1	0	0	1	1	1	1	0	1	0	0	1	1	0	0	1
0	0	0	1	1	0	0	1	1	0	0	1	0	0	0	0	1	1	0
1	0	1	1	0	0	1	0	0	1	0	0	1	0	0	0	1	0	0
1	0	1	0	0	0	0	0	1	1	1	0	1	1	0	0	1	1	0
1	0	1	1	1	0	0	0	1	0	1	1	0	0	0	0	1	0	1
1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	1
1	1	0	0	1	1	0	1	1	0	0	1	0	0	0	0	1	0	0
1	1	1	0	1	1	1	1	1	0	0	1	0	1	1	0	1	0	0
0	0	0	1	1	1	0	0	0	0	0	1	0	0	0	1	1	0	0
1	0	1	1	0	0	0	1	1	0	0	1	0	0	0	1	1	0	0
0	1	0	1	0	1	0	1	1	0	0	1	0	0	0	1	0	1	1
1	0	1	1	1	0	1	0	0	0	0	0	1	0	0	1	1	0	0
0	1	1	0	1	0	1	0	0	1	0	1	0	1	0	1	0	0	1
0	1	1	1	1	0	1	1	1	0	0	1	1	0	0	1	0	1	1
1	0	1	0	1	0	1	1	0	0	0	1	0	0	0	0	0	0	0
1	1	1	0	0	1	0	1	0	0	0	1	0	0	0	1	1	0	0
0	1	0	0	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	1	0	0	0	1	0	0	0	1	1	0	0	1
1	0	1	0	0	1	1	0	0	0	1	0	0	0	0	0	1	0	1
1	0	1	1	0	1	0	0	0	0	0	1	0	0	0	1	1	0	0
1	1	1	1	0	0	1	1	1	0	0	1	0	0	0	1	1	0	0
0	1	0	0	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0
1	0	1	0	1	0	0	1	1	0	0	1	0	0	0	0	1	0	1
1	0	1	1	0	0	1	0	0	0	0	1	0	0	0	0	1	0	1
1	0	0	1	0	0	1	1	1	0	0	1	0	0	0	1	1	0	0
0	1	1	1	0	0	1	1	1	0	0	1	0	0	0	0	1	1	1
1	1	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1	1	0
0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	1	1	1
1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1

Decimal Numbers

Recall the **Addition** by Hand

- Adding two decimal numbers by hand involves a simple algorithm
 - Place the two numbers on top of one another
 - **Right-align** the least-significant digits
 - Add **leading zeros**, if needed
 - Starting from the least significant (rightmost) column, add digits one column at a time
 - If the sum requires two digits, propagate the **extra digit**, called **carry**, to the next column to the left
 - Continue until there is nothing left to add
- Carry taking part in the sum is typically called **carry-in** (input carry); carry produced as part of the partial result is called **carry-out** (output carry)

$$\begin{array}{r} X \\ + Y \\ \hline X + Y \end{array} \quad \xrightarrow{\hspace{1cm}} \quad \begin{array}{r} 190_{10} \\ + 141_{10} \\ \hline 331_{10} \end{array}$$

Decimal Numbers

Example: Addition by Hand

$$\begin{array}{r} X \\ + Y \\ \hline X + Y \end{array} \quad \begin{array}{r} 0 \ 1 \ 0 \ 0 \\ \text{Carry} \\ \hline 1 \ 9 \ 0_{10} \\ + 1 \ 4 \ 1_{10} \\ \hline 3 \ 3 \ 1_{10} \end{array}$$

Least-significant digit

$$s_i + 10 \cdot c_{\text{out}} = X_i + Y_i + c_{\text{in}}$$

Sum (one digit)

Carry-in

Carry-out

Index i

Direction

END

	X_i	Y_i	c_{in}	s_i	c_{out}
$i = 0$	0	1	0	1	0
$i = 1$	9	4	0	3	1
$i = 2$	1	1	1	3	0
$i = 3$	0	0	0	0	0

$X_i + Y_i + c_{\text{in}} > 9$ Carry occurred

Decimal Numbers

Example: Addition by Hand

$$\begin{array}{r} X \\ + Y \\ \hline X + Y \end{array} \quad \begin{array}{r} + 0 1 0 0 \\ + 1 7 3_{10} \\ + 0 4 4_{10} \\ \hline 2 1 7_{10} \end{array}$$

Least-significant digit

Carry

$$s_i + 10 \cdot c_{\text{out}} = X_i + Y_i + c_{\text{in}}$$

Sum (one digit)

Carry-in

Carry-out

Index i

Direction

END

	X_i	Y_i	c_{in}	s_i	c_{out}
$i = 0$	3	4	0	7	0
$i = 1$	7	4	0	1	1
$i = 2$	1	0	1	2	0
$i = 3$	0	0	0	0	0

$X_i + Y_i + c_{\text{in}} > 9$ Carry occurred

Example: Decimal Numbers

Example: Subtraction by Hand

$$d_i - 10 \cdot b_{\text{out}} = X_i - Y_i - b_{\text{in}}$$

- Subtraction is performed similarly to addition
 - Instead of carries, using **borrows**

$$\begin{array}{r} - 0 1 0 0 \\ - 2 2 9_{10} \\ \hline - 0 4 6_{10} \\ \hline 1 8 3_{10} \end{array}$$

Borrow (arrow pointing to the tens column of the minuend)

Least-significant digit (arrow pointing to the ones column of the result)

Difference (one digit)

Borrow-in (arrow pointing to the tens column of the minuend)

Borrow-out (arrow pointing to the tens column of the result)

Direction (vertical arrow pointing down)

Index <i>i</i>	X_i	Y_i	b_{in}	d_i	b_{out}
$i = 0$	9	6	0	3	0
$i = 1$	2	4	0	8	1
$i = 2$	2	0	1	1	0
$i = 3$	0	0	0	0	0

END (arrow pointing to the last row of the table)

$X_i - Y_i - b_{\text{in}} < 0$ Borrow occurred

Decimal Numbers

Example: Subtraction by Hand

$$d_i - 10 \cdot b_{\text{out}} = X_i - Y_i - b_{\text{in}}$$

- Subtraction is performed similarly to addition
 - Instead of carries, using **borrows**

$$\begin{array}{r} X \\ - Y \\ \hline X - Y \end{array} \quad \begin{array}{r} - 0 0 1 0 \\ - 2 1 0 \\ \hline - 1 0 9 \\ \hline 1 0 1 \end{array}$$

Least-significant digit

Borrow

Difference (one digit)

Borrow-in

Borrow-out

Index i

Direction

END

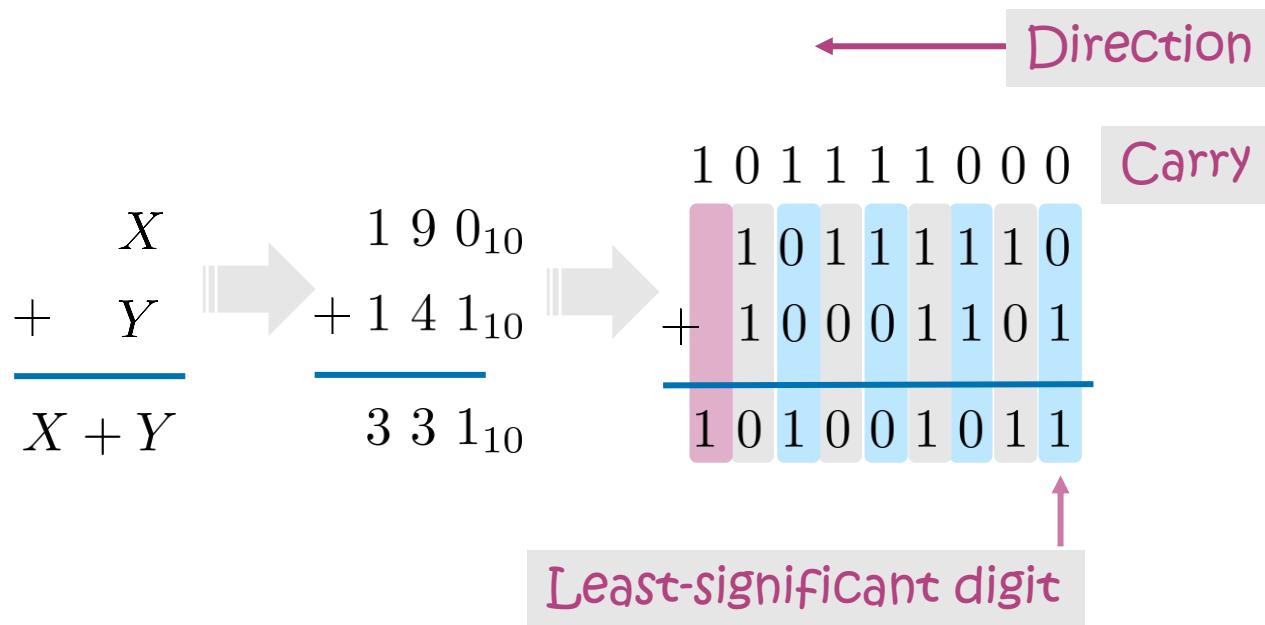
	X_i	Y_i	b_{in}	d_i	b_{out}
$i = 0$	0	9	0	1	1
$i = 1$	1	0	1	0	0
$i = 2$	2	1	0	1	0
$i = 3$	0	0	0	0	0

$X_i - Y_i - b_{\text{in}} < 0$ Borrow occurred

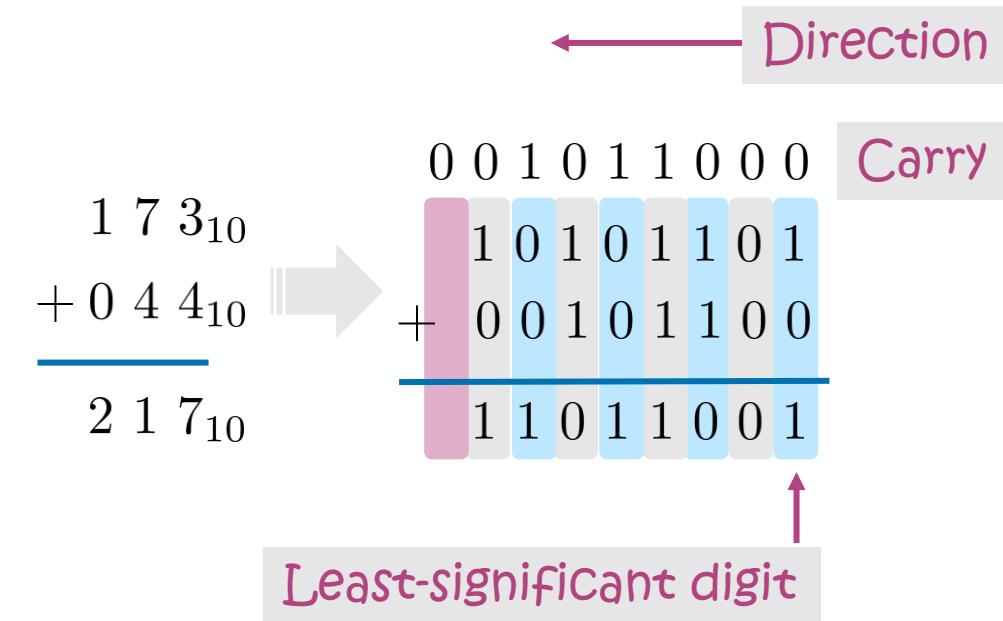
Addition of Unsigned Integers

By Hand

- The same idea as for decimal numbers
- Example 1:



- Example 2:



How Many Bits Are Needed...

- ...to represent the sum of two n-bit unsigned numbers?

A: $n + 1$

$$s_{\min} = 0 + 0 = 0$$

$$s_{\max} = (2^n - 1) + (2^n - 1) = 2 \cdot 2^n - 2 = 2^{n+1} - 2$$

n+1 bits for the sum

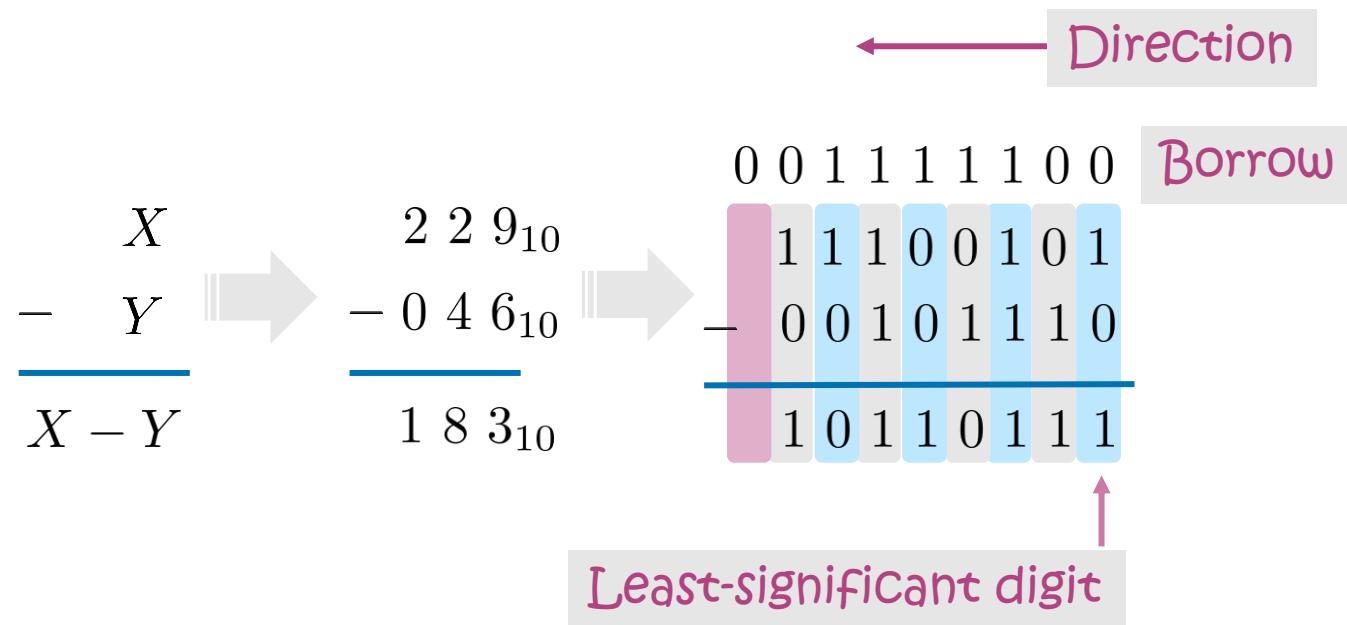
- But we do not always have the extra bit in hardware!
- When the magnitude of the result exceeds the largest representable value, we say an **overflow** occurs and the result is incorrect

Subtraction of Unsigned Integers

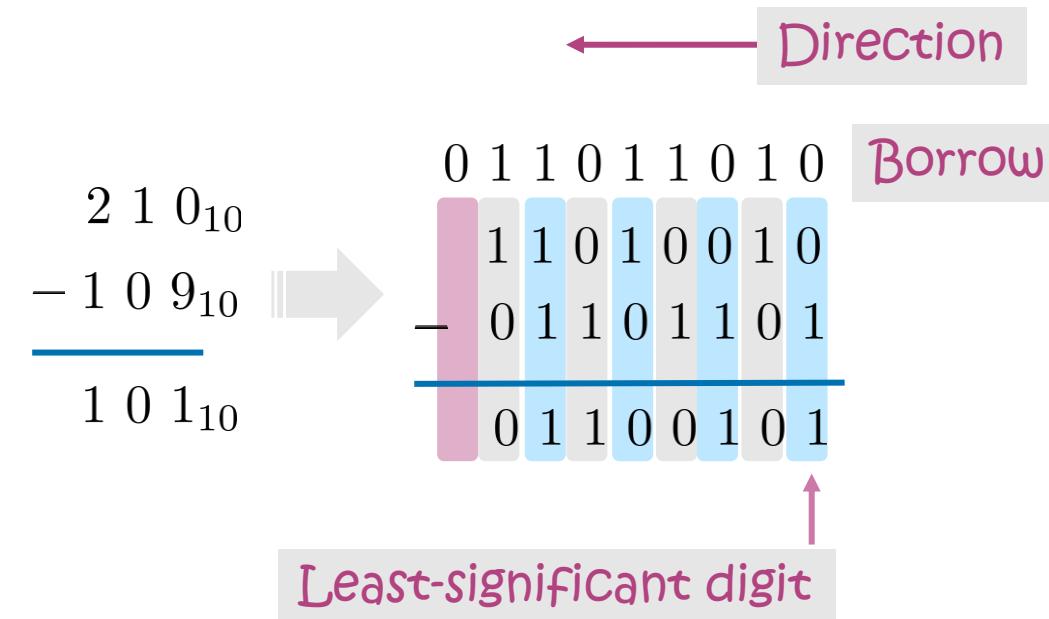
By Hand

- The same idea as for decimal numbers

- Example 1:



- Example 2:



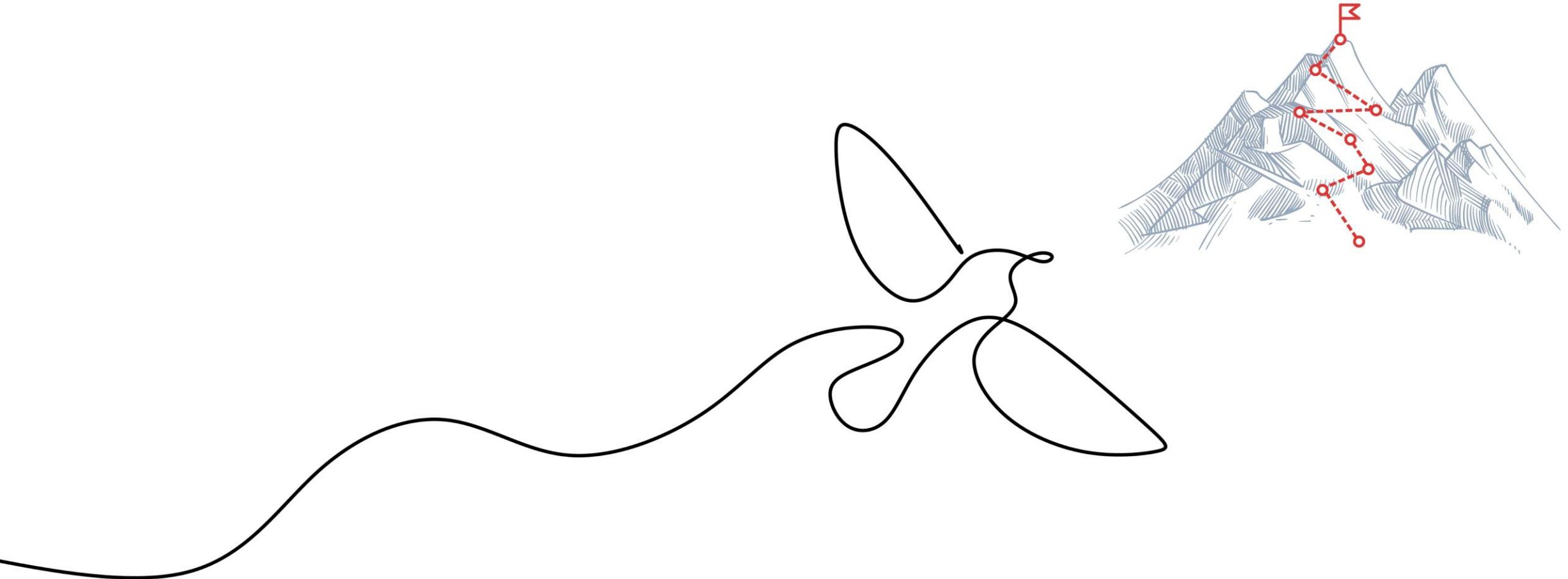
What If the Result Should be Negative?!

$$\begin{array}{r} 10_{10} \\ - 127_{10} \\ \hline -117_{10} \end{array}$$

$$\begin{array}{r} \dots 1111111110 \\ - \begin{array}{c} \text{Borrow} \\ \hline \text{00001010} \\ - \begin{array}{c} \text{01111111} \\ \hline \dots 10001011 \end{array} \end{array} \\ = 139_{10} \end{array}$$



- Negative results cannot be represented using an unsigned system
- Trying to represent a value smaller than the minimum representable by the given number of bits n , gives an incorrect result

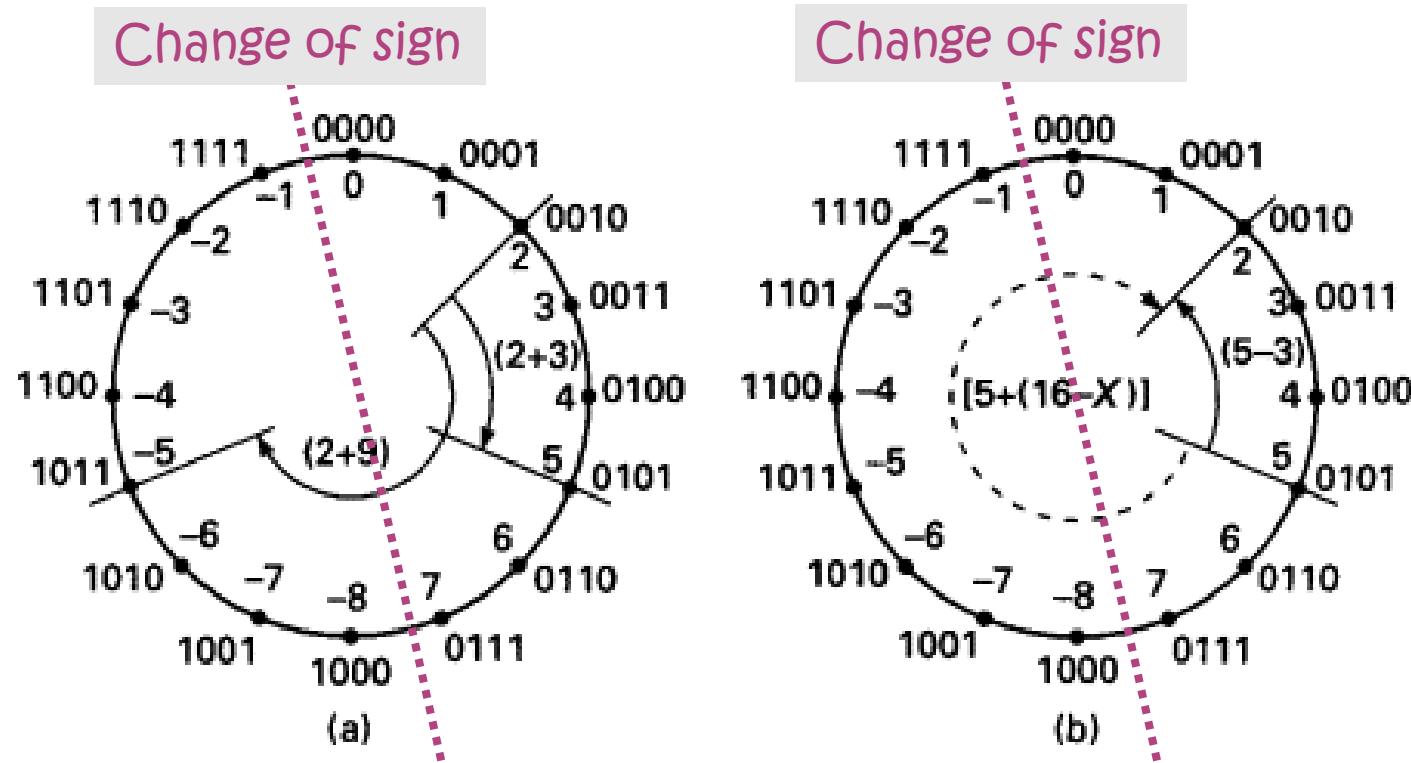


Two's Complement Addition and Subtraction

Two's Complement Arithmetic

Graphical Representation

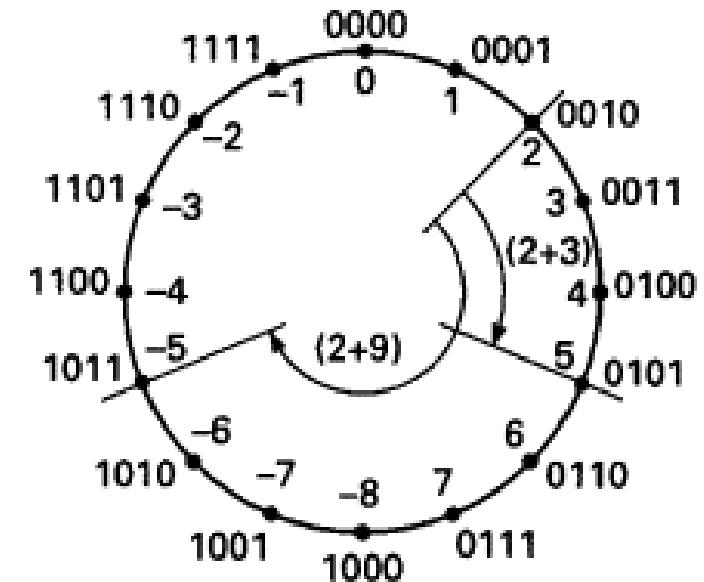
- Clockwise—addition of positive numbers
- Counterclockwise—subtraction of positive numbers



Two's Complement is ...

...the Preferred Representation in Digital Systems

- If we start with the smallest (most negative) number $1000_2 = -8_{10}$ and count up all successive numbers up to $0111_2 = 7_{10}$ can be obtained by adding 1 to the previous one
 - The result will always be correct as long as the range is not exceeded
 - Simple operation
 - Not as simple for sign-and-magnitude
 - Good for hardware implementation
 - **Win-win: the same hardware can perform the addition of unsigned numbers**



Two's Complement Addition

Overflow Detection Rules

- Same algorithm as for the unsigned numbers
- If the result exceeds the range, **overflow** occurs
- **Overflow detection rules**
 - If the signs of the two numbers are the same but different from the sign of the sum, the overflow occurred
 - Alternative formulation: if c_{in} into and c_{out} out of the sign position are different, the overflow occurred
 - Adding two numbers of different signs never produces an overflow

Two's Complement Subtraction

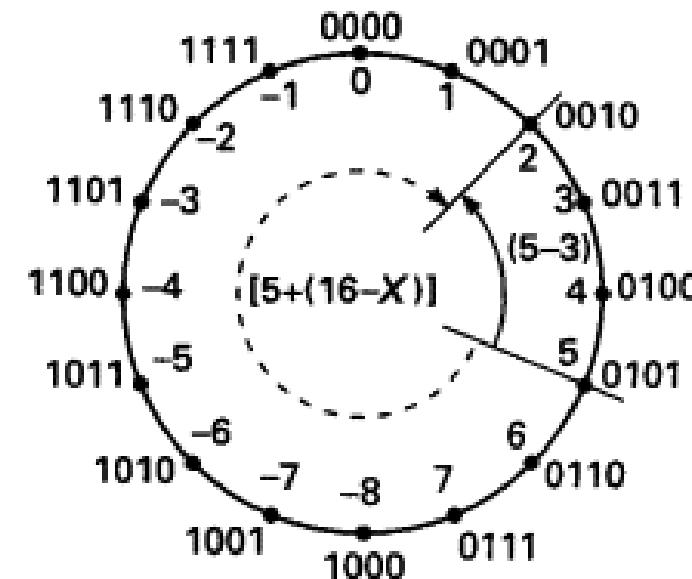
Graphical Representation

- To subtract x , we **add** the two's complement of x
 - In the case of $n=4$, the two's complement is

$$2^4 - x = 16 - x$$

- Example:

$$\begin{aligned}(5 - 3)_{10} &= 5_{10} + (-3)_{10} = 0101_2 + -(0011)_2 \\ &= 0101_2 + (1100_2 + 1_2) = 0101_2 + 1101_2 \\ &= 0010_2 = 2_{10}\end{aligned}$$



Two's Complement Addition and Subtraction

Examples

$$-3_{10} = -(0011_2) = 1100_2 + 1_2 = 1101_2$$

EXAMPLES

Overflow

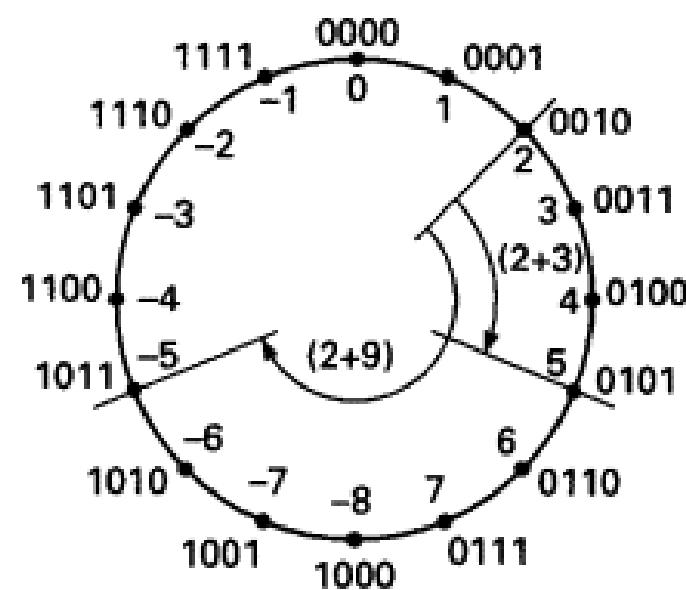
$$\begin{array}{r} -3_{10} \\ + -6_{10} \\ \hline -9_{10} \end{array} \quad \begin{array}{r} 1101_2 \\ + 1010_2 \\ \hline 10111_2 \end{array}$$

$$-6_{10} = -(0110_2) = 1001_2 + 1_2 = 1010_2$$

$$\begin{array}{r} 5_{10} \\ + -6_{10} \\ \hline -1_{10} \end{array} \quad \begin{array}{r} 0101_2 \\ + 1010_2 \\ \hline 1111_2 \end{array}$$

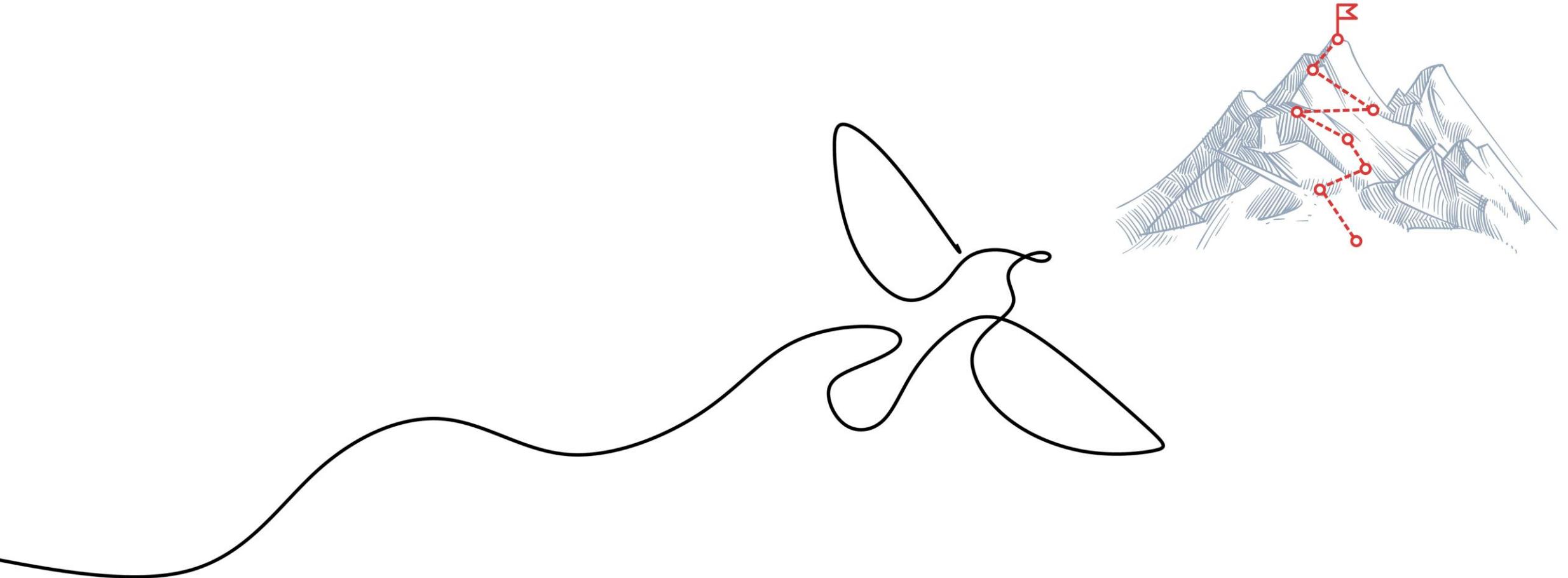
Overflow

$$\begin{array}{r} -8_{10} \\ + -8_{10} \\ \hline -16_{10} \end{array} \quad \begin{array}{r} 1000_2 \\ + 1000_2 \\ \hline 10000_2 \end{array}$$



Overflow

$$\begin{array}{r} 5_{10} \\ + 6_{10} \\ \hline 11_{10} \end{array} \quad \begin{array}{r} 0101_2 \\ + 0110_2 \\ \hline 1011_2 \end{array}$$



Binary Multiplication

Decimal Numbers

Recall the Multiplication by Hand

$$\begin{array}{r}
 X \\
 \times Y \\
 \hline
 X \times Y
 \end{array}
 \quad \xrightarrow{\hspace{1cm}} \quad
 \begin{array}{r}
 \times \quad \quad \quad \text{Multiplicand} \\
 \times \quad \quad \quad \text{Multiplier} \\
 \hline
 \quad \quad \quad \text{Product}
 \end{array}$$

Diagram illustrating the multiplication of two decimal numbers, X and Y , resulting in the product $X \times Y$. The numbers are shown as 11_{10} and 13_{10} . The multiplicand is 11_{10} and the multiplier is 13_{10} . The product is 143_{10} . The diagram shows the manual multiplication process with a blue arrow pointing from the multiplication operation to the result.

- Final product is the sum of shifted multiplicands

$$\begin{aligned}
 X \cdot Y &= X \cdot \sum_{i=0}^{n-1} Y_i \cdot 10^i \\
 &= \sum_{i=0}^{n-1} Y_i \cdot X \cdot 10^i
 \end{aligned}$$

- Example:

$$\begin{aligned}
 11_{10} \cdot 13_{10} &= 11 \cdot (3 \cdot 10^0 + 1 \cdot 10^1) \\
 &= 3 \cdot 11 \cdot 10^0 + 1 \cdot 11 \cdot 10^1 \\
 &= 33 + 110 \\
 &= 143_{10}
 \end{aligned}$$

Multiplication of Unsigned Integers

- Applying the same technique to binary representation

$$\begin{aligned} X \cdot Y &= X \cdot \sum_{i=0}^{n-1} Y_i \cdot 2^i \\ &= \sum_{i=0}^{n-1} X \cdot Y_i \cdot 2^i \\ &= Y_{n-1} \cdot X \cdot 2^{n-1} + \dots + Y_2 \cdot X \cdot 2^2 + Y_1 \cdot X \cdot 2^1 + Y_0 \cdot X \cdot 2^0 \end{aligned}$$

Diagram illustrating the components of the multiplication equation:

- $Y_{n-1} \cdot X \cdot 2^{n-1}$ is labeled "Multiplicand Left-shifted by $n-1$ ".
- $Y_2 \cdot X \cdot 2^2$ is labeled "Multiplicand Left-shifted by 2".
- $Y_1 \cdot X \cdot 2^1$ is labeled "Multiplicand Left-shifted by 1".
- $Y_0 \cdot X \cdot 2^0$ is labeled "Multiplicand".

Multiplication of Unsigned Integers

Example

- Same idea, except we add each shifted multiplicand once at a time; so-called **shift-and-add algorithm**; hardware-friendly

$$\begin{array}{r} 11_{10} \\ \times 13_{10} \\ \hline 143_{10} \end{array} \quad \begin{array}{r} \text{Multiplicand} \\ \text{Multiplier} \\ \text{Result} \end{array}$$

$$\begin{aligned} 143_{10} &= 1000111_2 \\ &= 128 + 8 + 4 + 2 + 1 \end{aligned}$$

1 0 1 1	Multiplicand
× 1 1 0 1	Multiplier
$\frac{0 0 0 0}{+ 1 0 1 1}$	
$\frac{0 1 0 1 1}{+ 0 0 0 0}$	
$\frac{0 0 1 0 1 1}{+ 1 0 1 1}$	
$\frac{0 1 1 0 1 1 1}{+ 1 0 1 1}$	
$\frac{1 0 0 0 1 1 1 1}{\text{Result}}$	

First partial product (always zero)
1 x multiplicand
Partial product
0 x multiplicand, then left-shifted by 1 place
Partial product
1 x multiplicand, then left-shifted by 2 places
Partial product
1 x multiplicand, then left-shifted by 3 places

When Multiplying Two Integers...

- ...one with n -bits and one with m -bits, at most how many bits are required to represent the resulting product?
- **A:** $n + m$

Hint: multiplication is a sequence of m -additions (the number of bits of the multiplier) with an n -bit number (the number of bits of the multiplicand). Every intermediate result requires one bit more than the previous.

Two's Complement Multiplication

Recall the value in two's complement
 $x = -X_{n-1}2^{n-1} + \sum_{i=0}^{n-2} X_i 2^i$

- Inspired by the previous algorithm

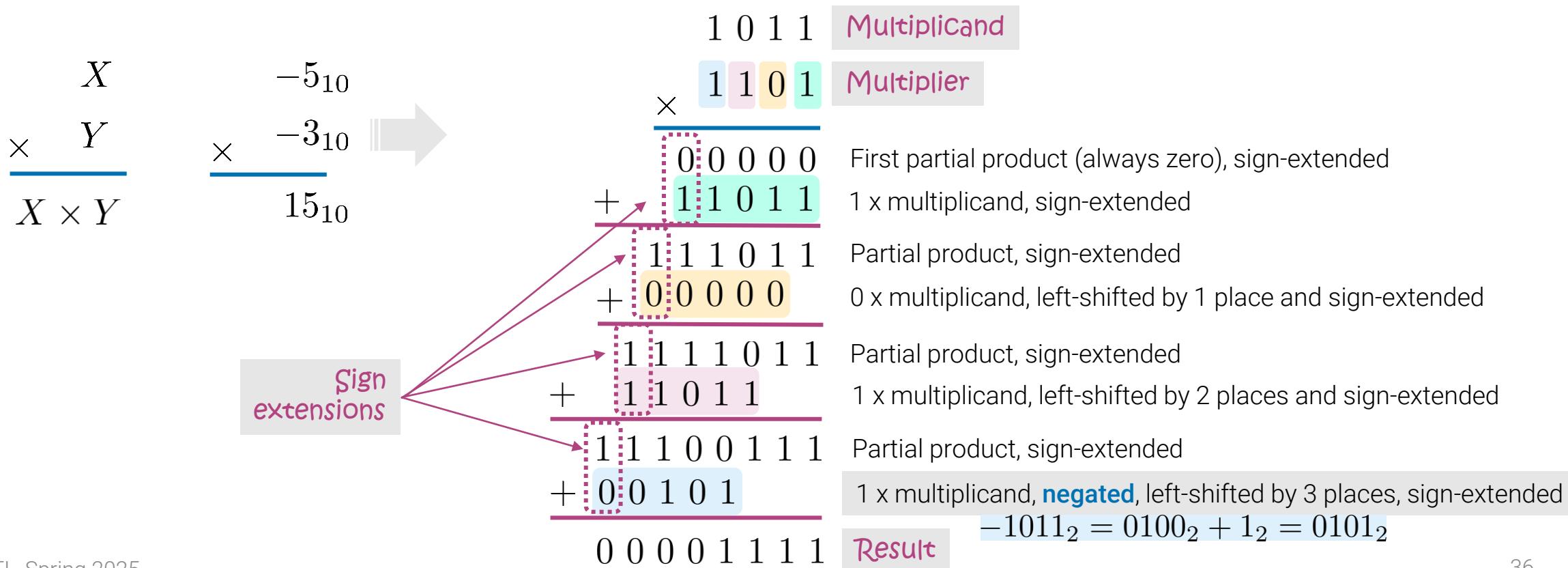
$$\begin{aligned} X \cdot Y &= X \cdot (-Y_{n-1} \cdot 2^{n-1}) + X \sum_{i=0}^{n-2} Y_i \cdot 2^i \\ &= -X \cdot Y_{n-1} \cdot 2^{n-1} + \sum_{i=0}^{n-2} X \cdot Y_i \cdot 2^i \\ &= -Y_{n-1} \cdot X \cdot 2^{n-1} + Y_{n-2} \cdot X \cdot 2^{n-2} \dots + Y_2 \cdot X \cdot 2^2 + Y_1 \cdot X \cdot 2^1 + Y_0 \cdot X \cdot 2^0 \end{aligned}$$

- Sign**: let us not forget to sign-extend the partial results

Two's Complement Multiplication

Example

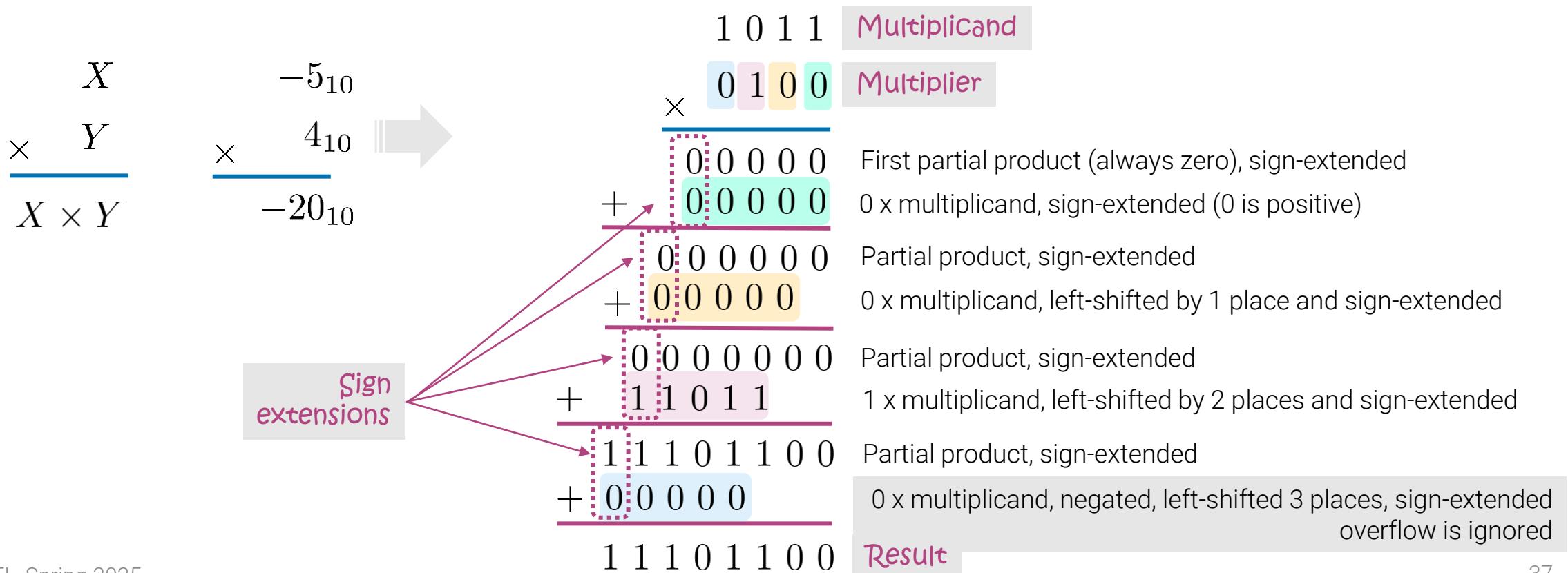
- $n+m$ bits are kept; any higher-order bits are discarded



Two's Complement Multiplication

Example

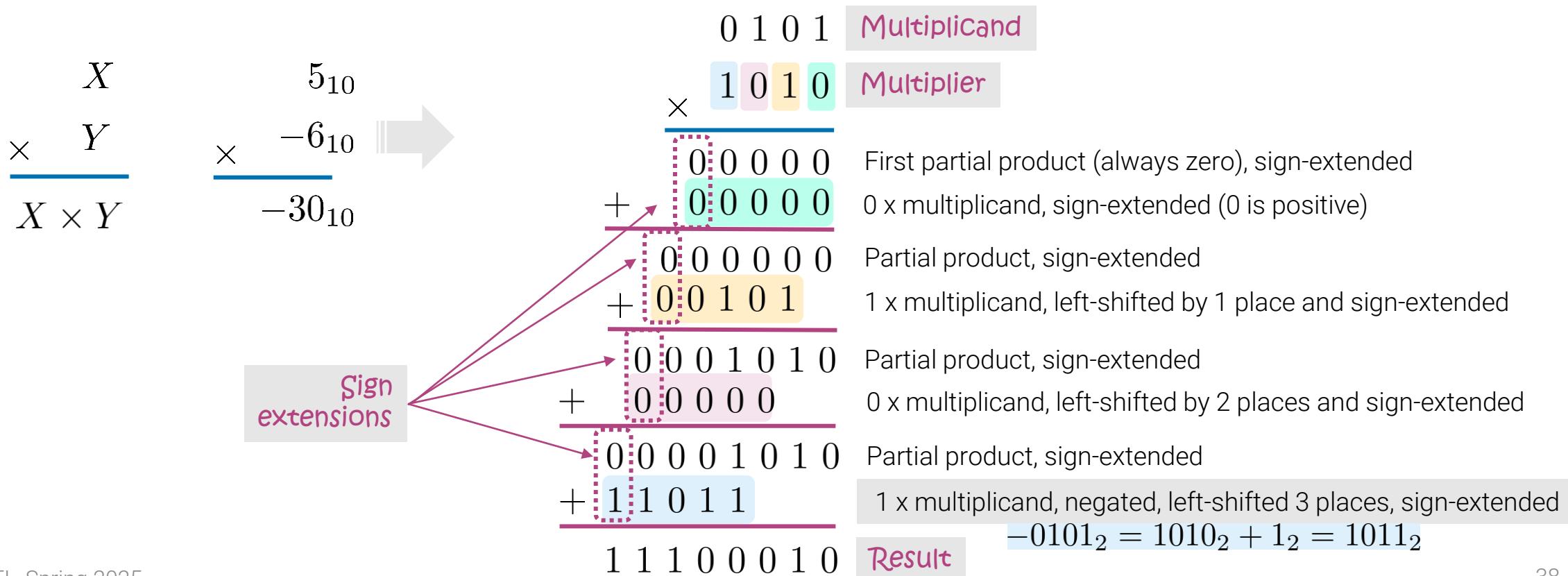
- Every intermediate result must have the correct sign

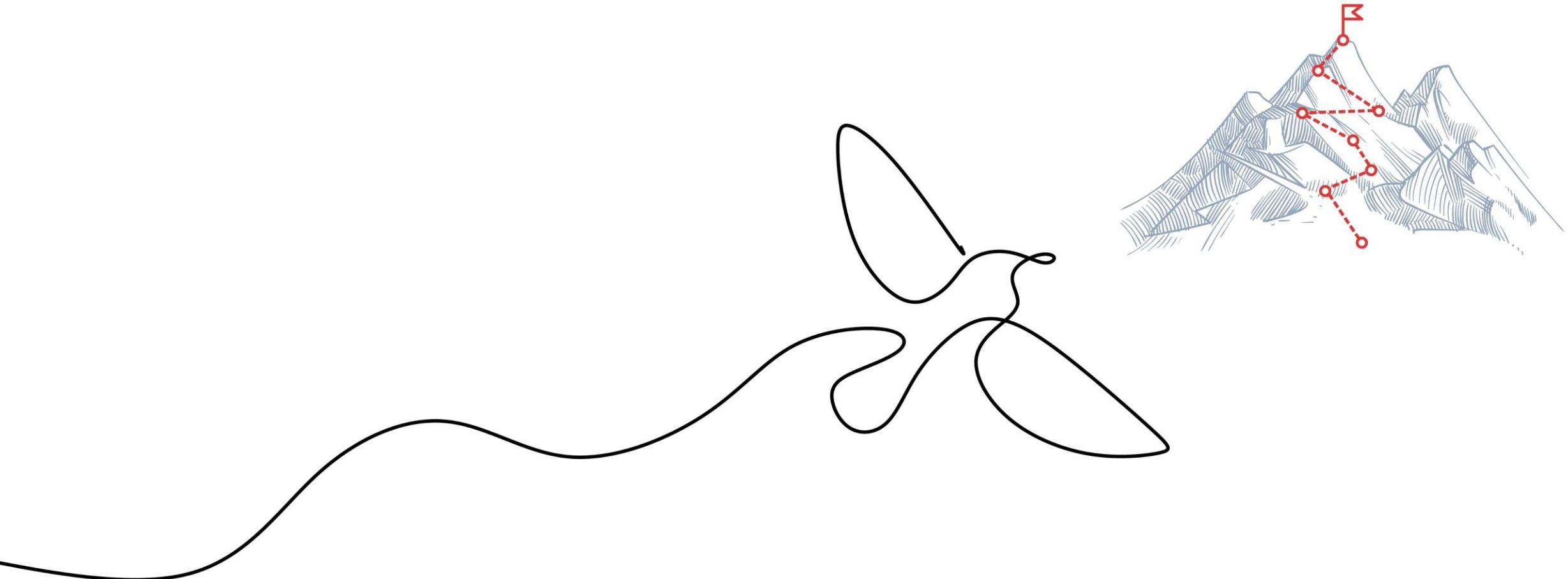


Two's Complement Multiplication

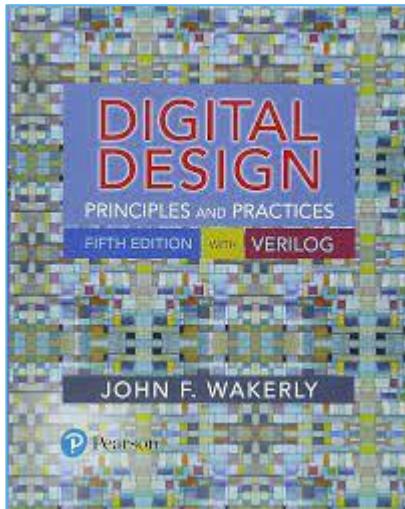
Example

- Every intermediate result must have the correct sign

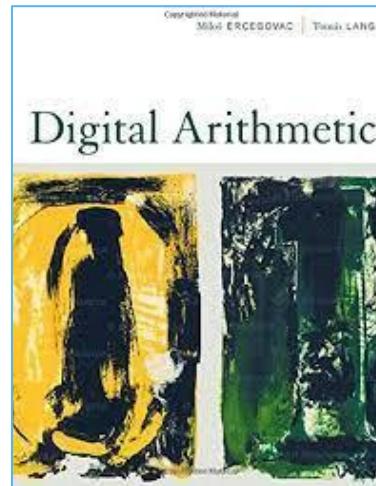




Literature



- Chapter 2: Number Systems and Codes
 - 2.6
 - 2.8



- Chapter 1: Preview of Basic Number Representations and Arithmetic Algorithms
 - 1.3
 - 1.5